# 2022 Consumer Confidence Report for Public Water System CREEDMOOR MAHA WSC

This is your water quality report for January 1 to December 31, 2022

CREEDMOOR MAHA WSC provides surface water and ground water from Edwards aquifer and City of Austin Water in Travis county and Aqua Water in Bastrop County For more information regarding this report contact:

Name Matthew Pickle

Phone 512-243-2113

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (512-243-2113

#### **Definitions and Abbreviations**

| Definitions and Abbreviations                      | The following tables contain scientific terms and measures, some of which may require explanation.                                                                                                                                                                   |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Action Level:                                      | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.                                                                                                                                    |
|                                                    |                                                                                                                                                                                                                                                                      |
| Avg:                                               | Regulatory compliance with some MCLs are based on running annual average of monthly samples.                                                                                                                                                                         |
| Level 1 Assessment:                                | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.                                                                                      |
| Level 2 Assessment:                                | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. |
| Maximum Contaminant Level or MCL:                  | The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.                                                                                                  |
| Maximum Contaminant Level Goal or MCLG:            | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.                                                                                                                           |
| Maximum residual disinfectant level or MRDL:       | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.                                                                                      |
| Maximum residual disinfectant level goal or MRDLG: | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.                                                               |
| MFL                                                | million fibers per liter (a measure of asbestos)                                                                                                                                                                                                                     |
| mrem:                                              | millirems per year (a measure of radiation absorbed by the body)                                                                                                                                                                                                     |
| na:                                                | not applicable.                                                                                                                                                                                                                                                      |
| NTU                                                | nephelometric turbidity units (a measure of turbidity)                                                                                                                                                                                                               |
| pCi/L                                              | picocuries per liter (a measure of radioactivity)                                                                                                                                                                                                                    |

#### **Definitions and Abbreviations**

| ppb:                       | micrograms per liter or parts per billion                                           |
|----------------------------|-------------------------------------------------------------------------------------|
| ppm:                       | milligrams per liter or parts per million                                           |
| pqq                        | parts per quadrillion, or picograms per liter (pg/L)                                |
| ppt                        | parts per trillion, or nanograms per liter (ng/L)                                   |
| Treatment Technique or TT: | A required process intended to reduce the level of a contaminant in drinking water. |

# Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

#### Information about Source Water

CREEDMOOR MAHA WSC purchases water from AQUA WSC. AQUA WSC provides purchase ground water from Carrizo-Wilcox Aquifer

CREEDMOOR MAHA WSC purchases water from CITY OF AUSTIN · Customers of the City of Austin receive their drinking water from three water treatment plants. Each plant pumps, treats and disinfects surface water from the Lower Colorado River as it flows through Lake Travis and Lake Austin.

TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact. Creedmoor Maha WSC. Matthew Pickle 512-243-2113

| Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination                                                                               |
|-----------------|--------------|------|-------------------|-----------------|-----------------|-------|-----------|--------------------------------------------------------------------------------------------------------------|
| Copper          | 06/15/2021   | 1.3  | 1.3               | 0.117           | 0               | ppm   | Ν         | Erosion of natural deposits; Leaching from wood<br>preservatives; Corrosion of household plumbing<br>systems |

# **2022 Water Quality Test Results**

| Disinfection By-Products | Collection Date | Highest Level<br>Detected | Range of Individual<br>Samples | MCLG                     | MCL | Units | Violation | Likely Source of Contamination             |
|--------------------------|-----------------|---------------------------|--------------------------------|--------------------------|-----|-------|-----------|--------------------------------------------|
| Haloacetic Acids (HAA5)  | 2022            | 1                         | 0 - 2                          | No goal for the<br>total | 60  | ррb   | N         | By-product of drinking water disinfection. |

\*The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

| То | tal Trihalomethanes (TTHM) | 2022 | 8 | 1.3 - 7.7 | No goal for the<br>total | 80 | ppb | N | By-product of drinking water disinfection. |
|----|----------------------------|------|---|-----------|--------------------------|----|-----|---|--------------------------------------------|
|    |                            |      |   |           | totai                    |    |     |   |                                            |

\*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

| Inorganic Contaminants         | Collection Date | Highest Level<br>Detected | Range of Individual<br>Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination                                                                                                   |
|--------------------------------|-----------------|---------------------------|--------------------------------|------|-----|-------|-----------|----------------------------------------------------------------------------------------------------------------------------------|
| Barium                         | 2022            | 0.107                     | 0.102 - 0.107                  | 2    | 2   | ppm   | N         | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.                                      |
| Cyanide                        | 04/29/2020      | 10                        | 0 - 10                         | 200  | 200 | ppb   | N         | Discharge from plastic and fertilizer factories;<br>Discharge from steel/metal factories.                                        |
| Fluoride                       | 04/29/2020      | 0.84                      | 0.66 - 0.84                    | 4    | 4.0 | ppm   | N         | Erosion of natural deposits; Water additive which<br>promotes strong teeth; Discharge from fertilizer and<br>aluminum factories. |
| Nitrate [measured as Nitrogen] | 2022            | 1                         | 0.08 - 1.15                    | 10   | 10  | ppm   | N         | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.                                     |

| Radioactive Contaminants                | Collection Date | Highest Level<br>Detected | Range of Individual<br>Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination |
|-----------------------------------------|-----------------|---------------------------|--------------------------------|------|-----|-------|-----------|--------------------------------|
| Gross alpha excluding radon and uranium | 04/29/2020      | 4.2                       | 4.2 - 4.2                      | 0    | 15  | pCi/L | Ν         | Erosion of natural deposits.   |

#### **Disinfectant Residual**

A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR).

| Disinfectant Residual | Year | Average Level | Range of Levels<br>Detected | MRDL | MRDLG | Unit of Measure | Violation (Y/N) | Source in Drinking Water |
|-----------------------|------|---------------|-----------------------------|------|-------|-----------------|-----------------|--------------------------|
|-----------------------|------|---------------|-----------------------------|------|-------|-----------------|-----------------|--------------------------|

| 2022 1.62 | 10.05 | 4 | 4 | PPM | Ν | Water was treated with Chlorine |
|-----------|-------|---|---|-----|---|---------------------------------|
|-----------|-------|---|---|-----|---|---------------------------------|

# 2022 Consumer Confidence Report for Public Water System TWIN CREEK PARK WATER SYSTEM

This is your water quality report for January 1 to December 31, 2022

TWIN CREEK PARK WATER SYSTEM provides surface water and ground water from Edwards Aquifer, Travis County

For more information regarding this report contact:

Matthew Pickle

Phone 512-243-2113

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono 512-243-2113

#### **Definitions and Abbreviations**

| Definitions and Abbreviations                      | The following tables contain scientific terms and measures, some of which may require explanation.                                                                                                                                                                   |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Action Level:                                      | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.                                                                                                                                    |
|                                                    |                                                                                                                                                                                                                                                                      |
| Avg:                                               | Regulatory compliance with some MCLs are based on running annual average of monthly samples.                                                                                                                                                                         |
| Level 1 Assessment:                                | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.                                                                                      |
| Level 2 Assessment:                                | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. |
| Maximum Contaminant Level or MCL:                  | The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.                                                                                                  |
| Maximum Contaminant Level Goal or MCLG:            | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.                                                                                                                           |
| Maximum residual disinfectant level or MRDL:       | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.                                                                                      |
| Maximum residual disinfectant level goal or MRDLG: | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.                                                               |
| MFL                                                | million fibers per liter (a measure of asbestos)                                                                                                                                                                                                                     |
| mrem:                                              | millirems per year (a measure of radiation absorbed by the body)                                                                                                                                                                                                     |
| na:                                                | not applicable.                                                                                                                                                                                                                                                      |
| NTU                                                | nephelometric turbidity units (a measure of turbidity)                                                                                                                                                                                                               |
| pCi/L                                              | picocuries per liter (a measure of radioactivity)                                                                                                                                                                                                                    |
|                                                    |                                                                                                                                                                                                                                                                      |

#### **Definitions and Abbreviations**

| ppb:                       | micrograms per liter or parts per billion                                           |
|----------------------------|-------------------------------------------------------------------------------------|
| ppm:                       | milligrams per liter or parts per million                                           |
| pqq                        | parts per quadrillion, or picograms per liter (pg/L)                                |
| ppt                        | parts per trillion, or nanograms per liter (ng/L)                                   |
| Treatment Technique or TT: | A required process intended to reduce the level of a contaminant in drinking water. |

# Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

#### Information about Source Water

TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact

Matthew Pickle 512-243-2113

| Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination                                                                               |
|-----------------|--------------|------|-------------------|-----------------|-----------------|-------|-----------|--------------------------------------------------------------------------------------------------------------|
| Copper          | 2022         | 1.3  | 1.3               | 0.098           | 0               | ppm   |           | Erosion of natural deposits; Leaching from wood<br>preservatives; Corrosion of household plumbing<br>systems |

# **2022** Water Quality Test Results

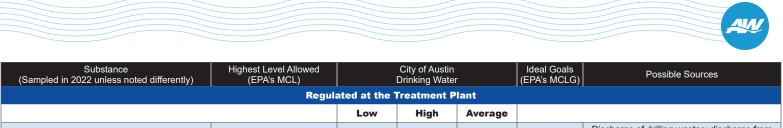
| Disinfection By-Products     | Collection Date | Highest Level<br>Detected | Range of Individual<br>Samples | MCLG                     | MCL | Units | Violation | Likely Source of Contamination             |
|------------------------------|-----------------|---------------------------|--------------------------------|--------------------------|-----|-------|-----------|--------------------------------------------|
| Haloacetic Acids (HAA5)      | 2022            | 1.5                       | 1.5 - 1.5                      | No goal for the<br>total | 60  | ppb   | Ν         | By-product of drinking water disinfection. |
| Total Trihalomethanes (TTHM) | 2022            | 4.7                       | 4.7 - 4.7                      | No goal for the<br>total | 80  | ррb   | Ν         | By-product of drinking water disinfection. |

| Inorganic Contaminants         | Collection Date | Highest Level<br>Detected | Range of Individual<br>Samples | MCLG | MCL | Units | Violation                                                          | Likely Source of Contamination                                                                                             |
|--------------------------------|-----------------|---------------------------|--------------------------------|------|-----|-------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Barium                         | 2022            | 0.11                      | 0.11 - 0.11                    | 2    | 2   | ppm   | Ν                                                                  | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.                                |
| Chromium                       | 2022            | 13.2                      | 13.2 - 13.2                    | 100  | 100 | ррb   | N Discharge from steel and pulp mills; Erosio<br>natural deposits. |                                                                                                                            |
| Fluoride                       | 03/04/2021      | 0.73                      | 0.73 - 0.73                    | 4    | 4.0 | ppm   | Ν                                                                  | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. |
| Nitrate [measured as Nitrogen] | 2022            | 1                         | 1.21 - 1.21                    | 10   | 10  | ppm   | N                                                                  | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.                               |
| Selenium                       | 2022            | 3.4                       | 3.4 - 3.4                      | 50   | 50  | ppb   | Ν                                                                  | Discharge from petroleum and metal refineries;<br>Erosion of natural deposits; Discharge from mines.                       |

| Radioactive Contaminants                | Collection Date | Highest Level<br>Detected | Range of Individual<br>Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination |  |  |
|-----------------------------------------|-----------------|---------------------------|--------------------------------|------|-----|-------|-----------|--------------------------------|--|--|
| Gross alpha excluding radon and uranium | 04/29/2020      | 6.4                       | 6.4 - 6.4                      | 0    | 15  | pCi/L | N         | Erosion of natural deposits.   |  |  |

| Volatile Organic Contaminants | Collection Date | Highest Level<br>Detected | Range of Individual<br>Samples | MCLG        | MCL | Units | Violation | Likely Source of Contamination                                         |  |  |
|-------------------------------|-----------------|---------------------------|--------------------------------|-------------|-----|-------|-----------|------------------------------------------------------------------------|--|--|
| Ethylbenzene                  | 2022            | 0.7                       | 0 - 0.7                        | 0 - 0.7 700 |     | ppb   | Ν         | Discharge from petroleum refineries.                                   |  |  |
| Xylenes                       | 2022            | 0.003                     | 0.003 0 - 0.003                |             | 10  | ppm   | Ν         | Discharge from petroleum factories; Discharge from chemical factories. |  |  |

#### **Disinfectant Residual**


A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR).

| Disinfectant Residual | Year | Average Level | Range of Levels<br>Detected | MRDL | MRDLG | Unit of Measure | Violation (Y/N) | Source in Drinking Water |
|-----------------------|------|---------------|-----------------------------|------|-------|-----------------|-----------------|--------------------------|
|-----------------------|------|---------------|-----------------------------|------|-------|-----------------|-----------------|--------------------------|

|  | 2022 | 1.60 | 1.4-1.8 | 4 | 4 | PPM | Ν | Water is treated with Chlorine |  |  |  |
|--|------|------|---------|---|---|-----|---|--------------------------------|--|--|--|
|  |      |      |         |   |   |     |   |                                |  |  |  |

### Violations

| Lead and Copper Rule                                                                                                                                                                                                                                          |                       |            |                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials. |                       |            |                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Violation Type                                                                                                                                                                                                                                                | Violation Explanation |            |                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| LEAD CONSUMER NOTICE (LCR)                                                                                                                                                                                                                                    | 12/30/2019            | 08/08/2022 | We failed to provide the results of lead tap water monitoring to the consumers at the location water was tested. These were supposed to be provided no later than 30 days after learning the results. |  |  |  |  |  |  |  |  |  |
| WATER QUALITY PARAMETER M/R (LCR)                                                                                                                                                                                                                             | 01/01/2022            | 12/31/2022 | We failed to turn in the test of our drinking water for the contaminant and period indicated. Water met standards.                                                                                    |  |  |  |  |  |  |  |  |  |



|                                               |                                                 |       | -                                 | -    |                |                                                                                                                                 |  |  |
|-----------------------------------------------|-------------------------------------------------|-------|-----------------------------------|------|----------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| Barium (ppm)                                  | 2                                               | 0.01  | 0.01                              | 0.01 | 2              | Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits                                      |  |  |
| Beta/photon emitters (pCi/L*) (2021)          | 50                                              | 4.3   | 4.3                               | 4.3  | 0              | Decay of natural and man-made deposits                                                                                          |  |  |
| Diquat (ppb)                                  | 20                                              | 0.6   | 0.6                               | 0.6  | 20             | Runoff from herbicide use                                                                                                       |  |  |
| Cyanide (ppb)                                 | 200                                             | 30    | 170 107                           |      | 200            | Discharge from steel/metal factories; discharge<br>from plastic and fertilizer factories                                        |  |  |
| Fluoride (ppm)                                | 4                                               | 0.5   | 0.8                               | 0.6  | 4              | Water additive which promotes strong teeth;<br>erosion of natural deposits; discharge from<br>fertilizer and aluminum factories |  |  |
| Nitrate (as Nitrogen) (ppm)                   | 10                                              | <0.05 | 0.21                              | 0.11 | 10             | Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits                                     |  |  |
| Total Organic Carbon (TOC) Removal<br>Ratio** | TT - Annual average ≥ 1                         | 1.24  | 2.69                              | 1.89 | not applicable | Naturally present in the environment                                                                                            |  |  |
|                                               | TT - 95% of monthly samples                     | 0.01  | 9.0***                            | 0.04 |                | Soil runoff; Austin Water measures turbidity                                                                                    |  |  |
| Turbidity (NTU)                               | must be ≤ 0.3 NTU &<br>no sample can be > 1 NTU |       | as the lowest r<br>tage of sample |      | not applicable | (cloudiness of water) as an indicator of the effectiveness of the filtration system                                             |  |  |

\*EPA considers 50 pCi/L to be the level of concern for beta particles.

\*\*The TOC removal ratio is calculated on a monthly basis and is the percent of TOC removed through the treatment process divided by the percent of TOC required by TCEQ to be removed. \*\*\*The three water treatment plants were in compliance with turbidity standards in 2022, with the exception of an event at one plant in February 2022. During a period between February 5-6, 2022, one water treatment plant did not continuously meet turbidity standards. Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease causing organisms. These organisms include bacteria, viruses and parasites that can cause symptoms such as nausea cramps, diarrhea and associated headaches.

|                                   | Regulat                  | ed in the Di | stribution Sy  | /stem |                |                                                |  |  |
|-----------------------------------|--------------------------|--------------|----------------|-------|----------------|------------------------------------------------|--|--|
| Chloramines (ppm)                 | 4 (MRDL)                 | 0.39         | 3.2            | 2.45  | ≤ 4 (MRDLG)    | Disinfectant used to control microbes          |  |  |
|                                   |                          | 5.9          | 14.7           | 10.1  |                |                                                |  |  |
| Haloacetic Acids (HAA5) (ppb)     | Yearly Average (LRAA) 60 | Hig          | jhest LRAA = 1 | 2.8   | not applicable | Byproduct of drinking water disinfection       |  |  |
|                                   |                          | 23.6         | 40.6           | 30.0  |                | Dunne duct of dein bin muscles divis for the m |  |  |
| otal Trihalomethanes (TTHM) (ppb) | Yearly Average (LRAA) 80 | Hig          | hest LRAA = 3  |       | not applicable | Byproduct of drinking water disinfection       |  |  |

In addition to other routine monitoring, Austin Water tests locations across our distribution system over 300 times per month for the presence of *E. coli* bacteria. None of these samples tested positive for the presence of *E. coli* bacteria in 2022. Austin Water was not required to conduct a Level 1 or Level 2 Assessment under EPA or State regulations.

| Lead and Copper Rule - Testing is done at customer taps. Testing is done every 3 years. |          |                                                                 |     |                                                                         |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------|-----|-------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| <b>Copper</b> (ppm) (2021)                                                              | AL = 1.3 | 90% of all samples tested were <0.004 ppm. None exceeded 1.3    | 1.3 | Corrosion of household plumbing systems;<br>erosion of natural deposits |  |  |  |  |  |  |  |  |
| Lead (ppb) (2021)                                                                       | AL = 15  | 90% of all samples tested were <1.0 ppb. One sample exceeded 15 | 0   | Corrosion of household plumbing systems;<br>erosion of natural deposits |  |  |  |  |  |  |  |  |

#### Unregulated Contaminants

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. Any unregulated contaminants detected are reported in the following table. For additional information and data visit epa.gov or call the Safe Drinking Water Hotline (800-426-4791).

| Highest Level Allowed<br>(EPA's MCL) | Low                                                                                                                                                                                                                           | High                                                                                                                                                                                                                                                                                                                                                                                                                            | Average                                                                                                                                                                                                                                               | Ideal Goals<br>(EPA's MCLG)                                                                                                                                                                                                                | Possible Sources                                                                                                                                                                                                                                              |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Not Regulated Individually           | 7.6                                                                                                                                                                                                                           | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.7                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                               |
| Not Regulated Individually           | 7.2                                                                                                                                                                                                                           | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.8                                                                                                                                                                                                                                                   | 60                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                               |
| Not Regulated Individually           | 4.5                                                                                                                                                                                                                           | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                   | 70                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                               |
| Not Regulated Individually           | 1.4                                                                                                                                                                                                                           | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                          | Byproduct of drinking water disinfection                                                                                                                                                                                                                      |
| Not Regulated Individually           | 3.2                                                                                                                                                                                                                           | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.9                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                          | Byproduct of driftking water disinfection                                                                                                                                                                                                                     |
| Not Regulated Individually           | <1.0                                                                                                                                                                                                                          | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                               |
| Not Regulated Individually           | 1.8                                                                                                                                                                                                                           | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.7                                                                                                                                                                                                                                                   | No MCLG                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                               |
| Not Regulated                        | 2.3                                                                                                                                                                                                                           | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.9                                                                                                                                                                                                                                                   | No MCLG                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                               |
|                                      | (EPA's MCL)<br>Not Regulated Individually<br>Not Regulated Individually<br>Not Regulated Individually<br>Not Regulated Individually<br>Not Regulated Individually<br>Not Regulated Individually<br>Not Regulated Individually | (EPA's MCL)         Low           Not Regulated Individually         7.6           Not Regulated Individually         7.2           Not Regulated Individually         4.5           Not Regulated Individually         1.4           Not Regulated Individually         3.2           Not Regulated Individually         3.2           Not Regulated Individually         1.0           Not Regulated Individually         1.8 | (EPA's MCL)LowHighNot Regulated Individually7.612.0Not Regulated Individually7.212.2Not Regulated Individually4.514.6Not Regulated Individually1.44.6Not Regulated Individually3.210.1Not Regulated Individually3.210.1Not Regulated Individually<1.0 | (EPA's MCL)LowHighAverageNot Regulated Individually7.612.09.7Not Regulated Individually7.212.29.8Not Regulated Individually4.514.68.0Not Regulated Individually1.44.62.4Not Regulated Individually3.210.15.9Not Regulated Individually<1.0 | (EPA's MCL)LowHighAverage(EPA's MCLG)Not Regulated Individually7.612.09.70Not Regulated Individually7.212.29.860Not Regulated Individually4.514.68.070Not Regulated Individually1.44.62.40Not Regulated Individually3.210.15.90Not Regulated Individually<1.0 |

Table Key

AL = Action Level The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

**Level 1 Assessment =** A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria were found.

**Level 2 Assessment =** A very detailed study of the water system to identify potential problems and determine (if possible) why an *Escherichia coli (E. coli)* MCL violation has occurred and/or why total coliform bacteria were found on multiple occasions.

LRAA = Locational Running Annual Average The average of sample results taken at a specific monitoring location during the previous four calendar quarters.

**MCL = Maximum Contaminant Level** The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best treatment technology.

**MCLG = Maximum Contaminant Level Goal** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

**MRDL = Maximum Residual Disinfectant Level** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

**MRDLG = Maximum Residual Disinfectant Level Goal** The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NTU = Nephelometric Turbidity Units (a measure of turbidity)

pCi/L = picocuries per liter (a measure of radioactivity)

ppb = parts per billion or micrograms per liter (µg/L)

ppm = parts per million or milligrams per liter (mg/L)

**TT = Treatment Technique** A required process intended to reduce the level of a contaminant in drinking water.

Radiochemicals

| Contaminate (Units)                            | мсі | MCLG | Rosanky (1) | S (2) | ER (3) | Highway 21 (4) | Camp Swift (5) |      |      |      |      | McDade (13) | Delhi (15) | McMahan (16) | Polonia<br>Main(17) | Dale Polonia<br>North(18) | Polonia<br>South(19) | Range     | Highest | Likely Source                           |
|------------------------------------------------|-----|------|-------------|-------|--------|----------------|----------------|------|------|------|------|-------------|------------|--------------|---------------------|---------------------------|----------------------|-----------|---------|-----------------------------------------|
| Year Sampled                                   |     |      | 2017        | 2017  | 2017   | 2017           | 2017           | 2017 | 2017 | 2021 | 2017 | 2020        | 2021       | 2021         | 2021                | 2019                      | 2021                 |           |         |                                         |
| Gross Beta Particles (pCi/L)                   | 50  | 0    | <4.0        | <4.0  | <4.0   | <4.0           | 5.0            | <4.0 | <4.0 | <4.0 | 5.7  | 5.2         | 5.4        | 4.4          | 4.8                 | <4.0                      | 4.0                  | <4.0-5.7  | 5.7     | Decay of natural and man-made deposits. |
| Radium 228 (pCi/L) 226/228                     | 5   | 0    | <1.0        | <1.0  | <1.0   | 1.15           | <1.0           | <1.0 | <1.0 | <1.0 | <1.0 | 1.53        | <1.0       | <1.0         | 1.50                | <1.0                      | 2.80                 | <1.0-2.80 | 2.80    | Erosion of natural deposits.            |
| Radium 228 (pCi/L)                             | 5   | 0    |             |       |        |                |                |      |      |      |      |             |            |              |                     |                           | 1.30                 | 1.30      | 1.30    | Erosion of natural deposits.            |
| Gross Alpha Excluding<br>Radon/Uranium (pCi/L) | 15  | 0    | <3.0        | <3.0  | <3.0   | <3.0           | <3.0           | <3.0 | <3.0 | <3.0 | <3.0 | <3.0        | <3.0       | <3.0         | <3.0                | <3.0                      | <3.0                 |           |         | Erosion of natural deposits.            |
| Gross Alpha Including<br>Radon/Uranium (pCi/L) | 15  | 0    |             |       |        |                |                |      |      |      |      | <3.0        |            |              | <3.0                | <3.0                      | <3.0                 |           |         | Erosion of natural deposits.            |
| Uranium (ppb)                                  | 30  | 0    | <1.0        | <1.0  | <1.0   | <1.0           | <1.0           | <1.0 | <1.0 | <1.0 | <1.0 | <1.0        | <1.0       | <1.0         | 1.0                 | <1.0                      | <1.0                 | <1.0      | 1.0     | Erosion of natural deposits.            |

Inorganics (All Metals)

| Contaminate                           | MCLG | MCL | Rosanky (1) | S (2)   | ER (3)  | Highway 21 (4) | Camp Swift (5) | M (6)   | L (7)   | C (8)   | Blue (9) | McDade (13) | Delhi (15) | McMahan (16) | Polonia<br>Main(17) | Dale Polonia<br>North(18) | Polonia<br>South(19) | Range         | Highest | Likely Source                                                                                                                                 |
|---------------------------------------|------|-----|-------------|---------|---------|----------------|----------------|---------|---------|---------|----------|-------------|------------|--------------|---------------------|---------------------------|----------------------|---------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Year Sampled                          |      |     | 2020        | 2020    | 2020    | 2020           | 2020           | 2022    | 2022    | 2021    | 2022     | 2020        | 2021       | 2021         | 2021                | 2022                      | 2021                 |               |         |                                                                                                                                               |
| Total Hardess as CaCO3 by Cal. (mg/L) |      |     | 13.5        | 55.3    | 158     | 43.9           | 220            | 38.7    | 2.85    | 178     | 177      | 129         | 22.4       | 152          | 351                 | 239                       | 452                  | 2.85-452      | 452     |                                                                                                                                               |
| Aluminum (mg/L)                       |      |     | < 0.02      | < 0.02  | < 0.02  | < 0.02         | < 0.02         | < 0.02  | < 0.02  | < 0.02  | < 0.02   | < 0.02      | < 0.02     | < 0.02       | < 0.02              | < 0.02                    | < 0.02               | < 0.02        | < 0.02  |                                                                                                                                               |
| Antimony (ppb)                        | 6    | 6   | <1.0        | <1.0    | <1.0    | <1.0           | <1.0           | <1.0    | <1.0    | <1.0    | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 | <1.0          | <1.0    | Discharge from petroleum refineries; fire<br>retardants; ceramics; electronics; solder.                                                       |
| Arsenic (ppb)                         | 10   | 10  | <2.0        | <2.0    | <2.0    | <2.0           | <2.0           | <2.0    | <2.0    | <2.0    | <2.0     | <2.0        | <2.0       | <2.0         | <2.0                | 4.9                       | <2.0                 | <2.0-4.9      | 4.9     | Erosion of natural deposits; Runoff from<br>orchards; Runoff from glass and electronics<br>production wastes.                                 |
| Barium (ppm)                          | 2    | 2   | 0.0656      | 0.0816  | 0.1450  | 0.128          | 0.119          | 0.0392  | 0.0117  | 0.1100  | 0.0383   | 0.142       | 0.0797     | 0.0798       | 0.083               | 0.0795                    | 0.109                | 0.0117-0.1450 | 0.1450  | Discharge of frilling wastes; Discharge from<br>metal refineries; Erosion of natural deposits.                                                |
| Beryllium (ppb)                       | 4    | 4   | <0.80       | <0.80   | <0.80   | <0.80          | <0.80          | <0.80   | <0.80   | <0.80   | <0.80    | <0.80       | <0.80      | <0.80        | <0.80               | <0.80                     | <0.80                |               |         | Discharge from metal refineries and coal-<br>burning factories; Discharge from electrical,<br>aerospace, and defense industries.              |
| Cadmium (ppb)                         | 5    | 5   | <1.0        | <1.0    | <1.0    | <1.0           | <1.0           | <1.0    | <1.0    | <1.0    | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |               |         | Corrosion of galvanized pipes; Erosion of<br>natural deposits; Discharge from metal<br>refineries; runoff from waste batteries and<br>paints. |
| Calcium (mg/L)                        |      |     | 3.43        | 12      | 48      | 11.3           | 72.6           | 9.69    | 1.14    | 55.1    | 48.1     | 38.3        | 6          | 35.1         | 103                 | 65.8                      | 144                  |               |         |                                                                                                                                               |
| Chromium (ppb)                        | 100  | 100 | <10         | <10     | <10.0   | <10.0          | <10.0          | <10.0   | <10.0   | <10.0   | <10.0    | <10.0       | <10.0      | <10.0        | <10                 | 10.6                      | <10                  | <10.0-10.6    | 10.6    | Discharge from steel and pulp mills; Erosion of<br>natural deposits.                                                                          |
| Copper (mg/L)                         |      |     | 0.013       | 0.017   | 0.0025  | 0.0202         | 0.0095         | 0.0129  | 0.008   | 0.0026  | 0.0203   | 0.0078      | < 0.002    | 0.003        | 0.0035              | < 0.002                   | 0.0029               |               |         |                                                                                                                                               |
| Iron (mg/L)                           |      |     | 0.014       | 0.036   | 0.011   | 0.066          | 0.035          | 0.037   | < 0.01  | 0.012   | < 0.01   | < 0.01      | 0.014      | < 0.01       | < 0.01              | < 0.01                    | 0.021                |               |         |                                                                                                                                               |
| Lead (mg/L)                           |      |     | < 0.001     | < 0.001 | < 0.001 | < 0.001        | 0.0024         | < 0.001 | < 0.001 | < 0.001 | < 0.001  | < 0.001     | < 0.001    | < 0.001      | < 0.001             | < 0.001                   | < 0.001              |               |         |                                                                                                                                               |
| Magnesium (mg/L)                      |      |     | 1.21        | 6.15    | 9.26    | 3.82           | 9.45           | 3.51    | <1.00   | 9.72    | 13.8     | 8.07        | 1.8        | 15.7         | 22.7                | 18.1                      | 22.5                 |               |         |                                                                                                                                               |
| Manganese (mg/L)                      |      |     | 0.007       | 0.0169  | 0.0016  | 0.0201         | 0.0042         | 0.0129  | 0.0031  | < 0.001 | < 0.001  | < 0.001     | 0.0011     | < 0.001      | < 0.001             | 0.0027                    | 0.0088               |               |         |                                                                                                                                               |
| Mercury (ppb)                         | 2    | 2   | <0.40       | <0.40   | < 0.40  | <0.40          | <0.40          | <0.40   | <0.40   | <0.40   | <0.40    | <0.40       | <0.40      | <0.40        | <0.40               | <0.40                     | <0.40                |               |         | Erosion of natural deposits; Discharge from<br>refineries and factories; Runoff from landfills;<br>Runoff from cropland.                      |
| Nickel (mg/L)                         |      |     | < 0.001     | < 0.001 |         | < 0.001        | 0.0015         | < 0.001 | < 0.001 | 0.001   | 0.0013   | < 0.001     | 0.0079     | < 0.001      | 0.0023              | < 0.001                   | 0.003                |               |         |                                                                                                                                               |
| Potassium (mg/L)                      |      |     | 2.11        | 2.36    | 2.46    | 2.33           | 3.00           | 2.84    | <1.00   | 2.58    | 4.44     | 3.18        | 5.73       | 3.51         | 5.31                | 4.38                      | 3.73                 |               |         |                                                                                                                                               |
| Selenium (ppb)                        | 50   | 50  | <3.0        | 5.2     | 5.5     | <3.0           | <3.0           | <3.0    | <3.0    | <3.0    | <3.0     | <3.0        | <3.0       | <3.0         | <3.0                | 17.2                      | <3.0                 | <3.0-17.2     | 17.2    | Discharge from petroleum and metal refineries;<br>Ersion of natural deposits; Discharge from<br>mines.                                        |
| Silver (mg/L)                         |      |     | < 0.01      | < 0.01  | < 0.01  | < 0.01         | < 0.01         | < 0.01  | < 0.01  | < 0.01  | < 0.01   | < 0.01      | < 0.01     | < 0.01       | < 0.01              | < 0.01                    | < 0.01               |               |         |                                                                                                                                               |
| Sodium (mg/L)                         |      |     | 172         | 256     | 77.7    | 73.6           | 27.4           | 133     | 96.6    | 54.6    | 60.7     | 68.1        | 15.6       | 113          | 43.9                | 82.5                      | 75.8                 |               |         |                                                                                                                                               |
| Thallium (ppb)                        | 0.5  | 2   | <0.40       | < 0.40  | < 0.40  | <0.40          | <0.40          | < 0.40  | < 0.40  | < 0.40  | < 0.40   | <0.40       | <0.40      | <0.40        | <0.40               | <0.40                     | <0.40                |               |         | Leaching from ore-processing sites; Discharge<br>from electronics, glass, and drug factories.                                                 |
| Zinc (mg/L)                           |      |     | 0.0052      | < 0.005 | 0.0121  | 0.0118         | < 0.005        | < 0.005 | 0.0078  | < 0.005 | 0.0065   | < 0.005     | 0.0334     | < 0.005      | 0.0062              | < 0.005                   | < 0.005              |               |         |                                                                                                                                               |
| Non Regulated                         |      |     |             |         |         |                |                |         |         |         |          |             |            |              |                     |                           |                      |               |         |                                                                                                                                               |

Inorganics (Single Mineral)

| Contaminate   | MCL<br>G |     |       |       |       | Highway 21 (4) |       |       |      |       |       |       |       |       | ~ ~ ~ / | Dale Polonia<br>North(18) |       | Range    | Highest | Likely Source                                                                          |
|---------------|----------|-----|-------|-------|-------|----------------|-------|-------|------|-------|-------|-------|-------|-------|---------|---------------------------|-------|----------|---------|----------------------------------------------------------------------------------------|
| Year Sampled  |          |     | 2020  | 2020  | 2020  | 2020           | 2020  | 2020  | 2020 | 2020  | 2020  | 2020  | 2020  | 2020  | 202     | 2020                      | 2020  |          |         |                                                                                        |
| Cyanide (ppb) | 200      | 200 | <10.0 | <10.0 | <10.0 | <10.0          | <10.0 | <10.0 | 30   | <10.0 | <10.0 | <10.0 | <10.0 | <10.0 | <10.0   | <10.0                     | <10.0 | <10.0-30 | 50      | Discharge from steel/metal factories; Discharge from plastic and fertilizer factories. |

Inorganics (Minerals)

| Constituent                               | MCLG | MCL | Rosanky (1) | S (2) | ER (3) | Highway 21 (4) | Camp Swift (5) | M (6) | L (7) | C (8)  | Blue (9) | McDade (13) | Delhi (15) | McMahan (16) |          | Dale Polonia | Polonia   | Range      | Highest | Likely Source                                                                                                                    |
|-------------------------------------------|------|-----|-------------|-------|--------|----------------|----------------|-------|-------|--------|----------|-------------|------------|--------------|----------|--------------|-----------|------------|---------|----------------------------------------------------------------------------------------------------------------------------------|
|                                           |      |     |             |       |        |                |                |       |       |        |          |             |            |              | Main(17) | North(18)    | South(19) |            |         |                                                                                                                                  |
| Year Sampled                              |      |     | 2020        | 2020  | 2020   | 2020           | 2020           | 2020  | 2020  | 2021   | 2020     | 2020        | 2021       | 2021         | 2022     | 2020         | 2021      |            |         |                                                                                                                                  |
| pH (S.U.)                                 |      |     | 8.5         | 7.4   | 7.7    | 7.6            | 7.4            | 7     | 7.8   | 8.1    | 7.7      | 7.7         | 8.5        | 8.4          | 7.9      |              | 7.8       |            |         |                                                                                                                                  |
| Diluted Conductance (µmho/cm)             |      |     | 765         | 1300  | 735    | 423            | 644            | 684   | 441   | 604    | 693      | 596         | 150        | 831          | 1050     | 948          | 1390      |            |         |                                                                                                                                  |
| Phenolphthalein Alkalinty as CaCO3 (mg/L) |      |     | <2          | <2    | <2     | <2             | <2             | <2    | <2    | <10    | <2       | <2          | <10        | <10          | <10      | <10          | <10       |            |         |                                                                                                                                  |
| Total Alkalinty as CaCO3 (mg/L)           |      |     | 369         | 429   | 212    | 174            | 180            | 217   | 185   | 203    | 176      | 205         | 16         | 249          | 185      | 236          | 265       |            |         |                                                                                                                                  |
| Bicarbonate (mg/L)                        |      |     | 450         | 523   | 259    | 212            | 220            | 265   | 226   | 248    | 215      | 250         | 20         | 300          | 226      | 288          | 323       |            |         |                                                                                                                                  |
| Carbonate (mg/L)                          |      |     | <2          | <2    | <2     | <2             | <2             | <2    | <2    | <10    | <2       | <2          | <10        | <10          | <10      | <10          | <10       |            |         |                                                                                                                                  |
| Fluoride (ppm)                            | 4    | 4   | 0.5         | 0.92  | 0.34   | 0.18           | 0.21           | 0.13  | 0.18  | 0.38   | 0.12     | 0.21        | <0.1       | 0.42         | 0.15     | 0.52         | 0.19      | <0.1-0.92  | 0.92    | Erosion of Natural deposits; Water additive which<br>promotes strong teeth; Discharge from fertilizer<br>and aluminum factories. |
| Chloride (mg/L)                           |      |     | 22          | 94    | 79     | 18             | 47             | 33    | 28    | 48     | 47       | 35          | 25         | 76           | 137      | 88           | 199       |            |         |                                                                                                                                  |
| Sulfate (mg/L)                            |      |     | 9           | 82    | 32     | 21             | 62             | 73    | 9     | 21     | 87       | 44          | 18         | 37           | 90       | 94           | 86        |            |         |                                                                                                                                  |
| Total Dissolved Solids (mg/L)             |      |     | 448         | 724   | 395    | 257            | 381            | 398   | 264   | 352    | 389      | 334         | 112        | 430          | 674      | 529          | 792       |            |         |                                                                                                                                  |
| Nitrate as N (ppm)                        | 10   | 10  | <0.05       | 0.13  | < 0.05 | < 0.05         | < 0.05         | 0.06  | 0.06  | < 0.05 | < 0.05   | < 0.05      | < 0.05     | < 0.05       | < 0.05   | 0.13         | < 0.05    | <0.05-0.13 |         | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of Natural deposits.                                     |

Non Regulated

Inorganics (Nitrate/Nitrite)

| Constituent        | MCI | LG M | ICL | Rosanky (1) | S (2)  | ER (3) | Highway 21 (4) | Camp Swift (5) | M (6)  | L (7)  | C (8)  | Blue (9) | McDade (13) | Delhi (15) | McMahan (16) | Polonia  | Dale Polonia | Polonia   | Range      | Highest | Likely Source                                                                             |
|--------------------|-----|------|-----|-------------|--------|--------|----------------|----------------|--------|--------|--------|----------|-------------|------------|--------------|----------|--------------|-----------|------------|---------|-------------------------------------------------------------------------------------------|
|                    |     |      |     |             |        |        |                |                |        |        |        |          |             |            |              | Main(17) | North(18)    | South(19) |            |         |                                                                                           |
| Year Sampled       |     |      |     | 2019        | 2019   | 2019   | 2019           | 2019           | 2019   | 2019   | 2020   | 2019     | 2019        | 2020       | 2020         | 2020     | 2020         | 2019      |            |         |                                                                                           |
| Nitrite as N (ppm) | 1   |      | 1   | < 0.05      | < 0.05 | < 0.05 | <0.05          | < 0.05         | < 0.05 | < 0.05 | < 0.05 | < 0.05   | < 0.05      | < 0.05     | < 0.05       | < 0.05   | < 0.05       | < 0.05    |            |         | Runoff from fertilizer use; Leaching from septic,<br>sewage; Erosion of natural deposits. |
| Year Sampled       |     |      |     | 2022        | 2022   | 2021   | 2022           | 2022           | 2022   | 2022   | 2022   | 2022     | 2022        | 2022       | 2022         | 2021     | 2021         | 2022      |            |         |                                                                                           |
| Nitrate as N (ppm) | 10  | ) [  | 10  | 0.05        | 0.12   | < 0.05 | 0.05           | <.05           | 0.06   | 0.07   | < 0.05 | < 0.05   | < 0.05      | < 0.05     | < 0.05       | < 0.05   | 0.16         | < 0.05    | <0.05-0.16 |         | Runoff from fertilizer use; Leaching from septic,<br>sewage; Erosion of natural deposits. |

Semivolatile Organic Compounds (Pesticides) SOC5

| Contaminate              | MCLG | MCL | Rosanky (1) | S (2)       | ER (3) | Highway 21 (4) | Camp Swift (5) | M (6)  | L (7)  | C (8)     | Blue (9) | McDade (13) | Delhi (15) | McMahan (16) | Polonia<br>Main(17) | Dale Polonia<br>North(18) | Polonia<br>South(19) | Range | Highest | Likely Source                   |
|--------------------------|------|-----|-------------|-------------|--------|----------------|----------------|--------|--------|-----------|----------|-------------|------------|--------------|---------------------|---------------------------|----------------------|-------|---------|---------------------------------|
| Year Sampled             |      |     | 2021        | 2021        | 2021   | 2021           | 2021           | 2021   | 2021   | 2021      | 2021     | 2021        | 2021       | 2022         | 2022                | 2021                      | 2022                 |       |         |                                 |
| Chlordane (ppb)          | 0    | 2   | < 0.20      | < 0.20      | < 0.20 | < 0.20         | < 0.20         | < 0.20 | < 0.20 | < 0.20    | < 0.20   | < 0.20      | < 0.2      | < 0.20       | < 0.20              | < 0.20                    | < 0.20               |       |         | Residual of banned termiticide. |
| Endrin (ppb)             | 2    | 2   | < 0.01      | $<\!\!0.01$ | < 0.01 | < 0.01         | < 0.01         | < 0.01 | < 0.01 | $<\!0.01$ | < 0.01   | < 0.01      | < 0.01     | < 0.01       | < 0.01              | < 0.01                    | < 0.01               |       |         | Residual of banned insecticide. |
| Heptachlor epoxide (ppt) | 0    | 200 | <20.0       | <20.0       | <20.0  | <20.0          | <20.0          | <20.0  | <20.0  | <20.0     | <20.0    | <20.0       | <20.0      | <20.0        | <20.0               | <20.0                     | <20.0                |       |         | Breakdown of heptchlor          |
| Toxaphene (ppb)          | 0    | 3   | <1.0        | <1.0        | <1.0   | <1.0           | <1.0           | <1.0   | <1.0   | <1.0      | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |         | insecticide used on cotton and  |

| Semivolatile Organic Compounds (Her | as (Herdicides) |
|-------------------------------------|-----------------|
|-------------------------------------|-----------------|

| Contaminate                      | MCL<br>G | MCL | Rosanky (1) | S (2)  | ER (3) | Highway 21 (4) | Camp Swift (5) | M (6)  | L (7)  | C (8)   | Blue (9) | McDade (13) | Delhi (15) | McMahan (16) | Polonia<br>Main(17) | Dale Polonia<br>North(18) | Polonia<br>South(19) | Range | Highest | Likely Source                                             |
|----------------------------------|----------|-----|-------------|--------|--------|----------------|----------------|--------|--------|---------|----------|-------------|------------|--------------|---------------------|---------------------------|----------------------|-------|---------|-----------------------------------------------------------|
| Year Sampled                     |          |     | 2020        | 2020   | 2020   | 2020           | 2020           | 2020   | 2020   | 2020    | 2020     | 2020        | 2020       | 2020         | 2021                | 2020                      | 2021                 |       |         |                                                           |
| 2,4-D (ppb)                      | 70       | 70  | <0.1        | < 0.1  | < 0.1  | <0.1           | <0.1           | <0.1   | <0.1   | < 0.1   | < 0.1    | <0.1        | <0.1       | <0.1         | <0.1                | <0.1                      | <0.1                 |       |         | Runoff from herbicide used<br>on row crops.               |
| 2,4,5-TP Silvex (ppb)            | 50       | 50  | <0.2        | < 0.2  | < 0.2  | <0.2           | <0.2           | < 0.2  | <0.2   | < 0.2   | < 0.2    | <0.2        | <0.2       | <0.2         | <0.2                | <0.2                      | < 0.2                |       |         | Residue of banned herbicide.                              |
| Pentachlorophenol (ppb)          | 0        | 1   | < 0.04      | < 0.04 | < 0.04 | < 0.04         | <0.04          | < 0.04 | < 0.04 | 4 <0.04 | <0.04    | < 0.04      | < 0.04     | <0.04        | <0.04               | < 0.04                    | < 0.04               |       |         | Discharge from wood<br>preserving factories.              |
| Dalapon (ppb)                    | 200      | 200 | <1          | <1     | <1     | <1             | <1             | <1     | <1     | <1      | <1       | <1          | <1         | <1           | <1                  | <1                        | <1                   |       |         | Runoff from herbicide used<br>on right of way.            |
| Dinoseb (ppb)                    | 7        | 7   | <0.2        | <0.2   | <0.2   | <0.2           | <0.2           | <0.2   | <0.2   | < 0.2   | <0.2     | <0.2        | <0.2       | <0.2         | <0.2                | <0.2                      | <0.2                 |       |         | Runoff from herbicide used<br>on soybeans and vegetables. |
| Picloram (ppb)                   | 500      | 500 | < 0.1       | < 0.1  | < 0.1  | <0.1           | < 0.1          | < 0.1  | < 0.1  | < 0.1   | < 0.1    | < 0.1       | < 0.1      | < 0.1        | < 0.1               | <0.1                      | < 0.1                |       |         | Herbicide runoff.                                         |
| Acifluorfen (µg/L)*              |          |     | <1.0        | <1.0   | <1.0   | <1.0           | <1.0           | <1.0   | <1.0   | <1.0    | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |         |                                                           |
| Bentazon (µg/L)*                 |          |     | <2.0        | <2.0   | <2.0   | <2.0           | <2.0           | <2.0   | <2.0   | <2.0    | <2.0     | <2.0        | <2.0       | <2.0         | <2.0                | <2.0                      | <2.0                 |       |         |                                                           |
| Chloraben (µg/L)*                |          |     | <1.0        | <1.0   | <1.0   | <1.0           | <1.0           | <1.0   | <1.0   | <1.0    | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |         |                                                           |
| 2,4-DB (µg/L)*                   |          |     | <2.0        | <2.0   | <2.0   | <2.0           | <2.0           | <2.0   | <2.0   | <2.0    | <2.0     | <2.0        | <2.0       | <2.0         | <2.0                | <2.0                      | <2.0                 |       |         |                                                           |
| Dicamba (µg/L)*                  |          |     | <1.0        | <1.0   | <1.0   | <1.0           | <1.0           | <1.0   | <1.0   | <1.0    | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |         |                                                           |
| 3,5-Dichlorobenzoic acid (µg/L)* |          |     | <1.0        | <1.0   | <1.0   | <1.0           | <1.0           | <1.0   | <1.0   | <1.0    | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |         |                                                           |
| Dichlorprop (µg/L)*              |          |     | <2.0        | <2.0   | <2.0   | <2.0           | <2.0           | <2.0   | <2.0   | <2.0    | <2.0     | <2.0        | <2.0       | <2.0         | <2.0                | <2.0                      | <2.0                 |       |         |                                                           |
| Quinclorac (µg/L)*               |          |     | <1.0        | <1.0   | <1.0   | <1.0           | <1.0           | <1.0   | <1.0   | <1.0    | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |         |                                                           |
| 2,4,5-T (µg/L)*                  |          |     | < 0.5       | < 0.5  | < 0.5  | < 0.5          | < 0.5          | < 0.5  | < 0.5  | < 0.5   | < 0.5    | < 0.5       | < 0.5      | < 0.5        | <0.5                | <0.5                      | < 0.5                |       |         |                                                           |

\* Non Regulated Compounds

Semivolatile Organic Compounds

| Contaminate                                                                               | MCL<br>G | MCL | Rosanky (1)    | S (2)          | ER (3)         | Highway 21 (4) | Camp Swift (5) | M (6)          | L (7)          | C (8)          | Blue (9)       | McDade (13)    | Delhi (15)     | McMahan (16)   | Polonia<br>Main(17) | Dale Polonia<br>North(18) | Polonia<br>South(19) | Range | Highest | Likely Source                                   |
|-------------------------------------------------------------------------------------------|----------|-----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------------|---------------------------|----------------------|-------|---------|-------------------------------------------------|
| Year Sampled                                                                              |          |     | 2021           | 2021           | 2021           | 2021           | 2021           | 2021           | 2021           | 2021           | 2021           | 2021           | 2021           | 2022           | 2022                | 2019                      | 2022                 |       |         |                                                 |
| Alachlor (ppb)                                                                            | 0        | 2   | < 0.2          | < 0.2          | < 0.2          | <0.2           | <0.2           | < 0.2          | <0.2           | < 0.2          | < 0.2          | <0.2           | < 0.2          | < 0.2          | < 0.2               | < 0.2                     | <0.2                 |       |         | Runoff from herbicide used                      |
| ur di o                                                                                   |          |     |                |                |                |                |                |                |                |                |                |                |                |                |                     |                           |                      |       |         | on row crops.<br>Runoff from herbicide used     |
| Atrazine (ppb)                                                                            | 3        | 3   | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1               | < 0.1                     | < 0.1                |       |         | on row crops.                                   |
|                                                                                           |          |     |                |                |                |                |                |                |                |                |                |                |                |                |                     |                           |                      |       |         | Leaching from linings of                        |
| Benzo(a)pyrene (ppt)                                                                      | 0        | 200 | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0               | <20.0                     | <20.0                |       |         | water storagetanks and                          |
|                                                                                           |          |     |                |                |                |                |                |                |                |                |                |                |                |                |                     |                           |                      |       |         | distribution lines.                             |
| alpha-Chlordane (ppb)                                                                     | 0        | 2   | < 0.2          | < 0.2          | < 0.2          | <0.2           | <0.2           | < 0.2          | < 0.2          | < 0.2          | < 0.2          | <0.2           | < 0.2          | <0.2           | <0.2                | <0.2                      | < 0.2                |       |         | Residue of banned herbicide.                    |
| gamma-Chlordane (ppb)                                                                     | 0        | 2   | < 0.2          | <0.2           | <0.2           | <0.2           | <0.2           | < 0.2          | <0.2           | <0.2           | <0.2           | <0.2           | < 0.2          | <0.2           | <0.2                | <0.2                      | <0.2                 |       |         | Residue of banned herbicide.                    |
| trans-Nonachlor (ppb)                                                                     | 0        | 2   | < 0.2          | < 0.2          | < 0.2          | < 0.2          | < 0.2          | < 0.2          | < 0.2          | < 0.2          | < 0.2          | < 0.2          | < 0.2          | < 0.2          | < 0.2               | < 0.2                     | < 0.2                |       |         | Runoff from herbicide used<br>on row crops.     |
|                                                                                           |          |     |                |                |                |                |                |                |                |                |                |                |                |                |                     |                           |                      |       |         | Discharge from chemical                         |
| Di(2-ethylhexyl) adipate (ppb)                                                            | 400      | 400 | <0.6           | <0.6           | <0.6           | <0.6           | <0.6           | <0.6           | <0.6           | <0.6           | <0.6           | <0.6           | <0.6           | <0.6           | <0.6                | <0.6                      | <0.6                 |       |         | factories.                                      |
| Di(2-ethylhexyl) phthalate (ppb)                                                          | 0        | 6   | <0.6           | < 0.6          | < 0.6          | <0.6           | <0.6           | <0.6           | <0.6           | < 0.6          | <0.6           | <0.6           | < 0.6          | <0.6           | <0.6                | <0.6                      | <0.6                 |       |         | Discharge from rubber and                       |
|                                                                                           |          | -   |                |                |                |                |                |                |                |                |                |                |                |                |                     |                           |                      | _     |         | chemical factories.                             |
| Heptachlor (ppt)                                                                          | 0        | 400 | <40.0          | <40.0          | <40.0          | <40.0          | <40.0          | <40.0          | <40.0          | <40.0          | <40.0          | <40.0          | <40.0          | <40.0          | <40.0               | <40.0                     | <40.0                |       |         | Residue of banned<br>termiticide.               |
|                                                                                           |          |     |                |                |                |                |                |                |                |                |                |                |                |                |                     |                           |                      |       |         | Discharge from metal                            |
| Hexachlorobenzene (ppb)                                                                   | 0        | 1   | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1               | < 0.1                     | < 0.1                |       |         | refineries and agricultural                     |
|                                                                                           |          |     |                |                |                |                |                |                |                |                |                |                |                |                |                     |                           |                      |       |         | chemical factories.                             |
| Hexachlorocyclopentadiene (ppb)                                                           | 50       | 50  | < 0.1          | < 0.1          | < 0.1          | <0.1           | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1               | < 0.1                     | < 0.1                |       |         | Discharge from chemical                         |
| Tiestaemoroeyetopentaatiete (ppo)                                                         | 50       | 50  |                |                | <0.1           |                |                | <b>NO.1</b>    |                |                |                |                | .0.1           |                |                     |                           |                      |       |         | factories.                                      |
| Lindens (ant)                                                                             | 200      | 200 | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0               | <20.0                     | <20.0                |       |         | Runoff/leaching from                            |
| Lindane (ppt)                                                                             | 200      | 200 | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0          | <20.0               | <20.0                     | <20.0                |       |         | insecticide used on cattle,<br>lumber, gardens. |
|                                                                                           |          |     |                |                |                |                |                |                |                |                |                |                |                |                |                     |                           |                      |       |         | Runoff/leaching from                            |
|                                                                                           | 10       | 10  |                |                |                |                |                |                |                |                |                |                |                |                |                     |                           |                      |       |         | insecticide used on fruits,                     |
| Methoxychlor (ppb)                                                                        | 40       | 40  | < 0.1          | < 0.1          | < 0.1          | <0.1           | <0.1           | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | <0.1           | < 0.1               | <0.1                      | < 0.1                |       |         | vegetables, alfalfa, and                        |
|                                                                                           |          |     |                |                |                |                |                |                |                |                |                |                |                |                |                     |                           |                      |       |         | livestock.                                      |
| Simazine (ppb)                                                                            | 4        | 4   | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07              | < 0.07                    | < 0.07               |       |         | Herbicide runoff.                               |
| Acenaphthene (µg/L)*                                                                      |          |     | <0.20          | < 0.20         | < 0.20         | <0.20          | <0.20          | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | <0.20          | < 0.20              | <0.20                     | < 0.20               | _     |         |                                                 |
| Acenaphthylene (µg/L)*                                                                    |          |     | <0.20<br><0.20      | <0.20<br><0.20            | <0.20<br><0.20       | -     |         |                                                 |
| Aldrin (µg/L)*<br>Anthracene (µg/L)*                                                      |          |     | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20               | <0.20                     | <0.20                |       |         |                                                 |
| Benzo(a)anthracene (µg/L)*                                                                |          |     | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20               | <0.20                     | <0.20                |       |         |                                                 |
| Benzo[b]fluoranthene (µg/L)*                                                              |          |     | < 0.20         | < 0.20         | < 0.20         | < 0.20         | <0.20          | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20              | < 0.20                    | < 0.20               |       |         |                                                 |
| Benzo[g,h,i]perylene (µg/L)*                                                              |          |     | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20              | < 0.20                    | < 0.20               |       |         |                                                 |
| Benzo[k]fluoranthene (µg/L)*                                                              |          |     | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20              | < 0.20                    | < 0.20               |       |         |                                                 |
| Bromacil (µg/L)*                                                                          |          |     | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20              | < 0.20                    | < 0.20               |       |         |                                                 |
| Butachlor (µg/L)*                                                                         |          |     | <0.20          | < 0.20         | < 0.20         | <0.20          | <0.20          | < 0.20         | < 0.20         | < 0.20         | < 0.20         | <0.20          | < 0.20         | <0.20          | <0.20               | <0.20                     | <0.20                | _     |         |                                                 |
| Butylbenzylphthalate (µg/L)*<br>2-Chlorobiphenyl (µg/L)*                                  |          |     | <2.0<br><0.20  | <2.0<br><0.20  | <2.0           | <2.0           | <2.0<br><0.20       | <2.0<br><0.20             | <2.0<br><0.20        | -     |         |                                                 |
| Chrysene (µg/L)*                                                                          |          |     | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20               | <0.20                     | <0.20                |       |         |                                                 |
| Dibenz[a,h]anthracene (µg/L)*                                                             |          |     | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20               | <0.20                     | <0.20                |       |         |                                                 |
| Di-n-butylphthalate (µg/L)*                                                               |          |     | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0                | <2.0                      | <2.0                 |       |         |                                                 |
| 2,3-Dichlorobiphenyl (µg/L)*                                                              |          |     | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20              | < 0.20                    | < 0.20               |       |         |                                                 |
| Dieldrin (µg/L)*                                                                          |          |     | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20              | < 0.20                    | < 0.20               |       |         |                                                 |
| Diethylphthalate (µg/L)*                                                                  |          |     | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0                | <2.0                      | <2.0                 |       |         |                                                 |
| Dimethylphthalate (µg/L)*                                                                 |          |     | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0           | <2.0                | <2.0                      | <2.0                 | _     |         |                                                 |
| Fluorene (µg/L)*                                                                          |          |     | <0.20<br><0.50 | <0.20<br><0.50 | <0.20<br><0.50 | <0.20          | <0.20<br><0.50 | <0.20<br><0.50 | <0.20<br><0.50 | <0.20          | <0.20<br><0.50 | <0.20<br><0.51 | <0.20<br><0.50 | <0.20<br><0.50 | <0.20               | <0.20<br><0.50            | <0.20<br><0.50       | -     |         |                                                 |
| 2,2',3,3',4,4',6-Heptachlorobiphenyl (µg/L)*<br>2,2',4,4',5,6'-Hexachlorobiphenyl (µg/L)* |          |     | <0.50          | <0.50          | <0.50          | <0.51          | <0.50          | <0.50          | <0.50          | <0.51          | <0.30          | <0.51          | <0.50          | <0.50          | <0.50               | <0.50                     | <0.50                |       |         |                                                 |
| Indeno[1,2,3-cd]pyrene (µg/L)*                                                            |          |     | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20               | <0.20                     | <0.20                |       |         |                                                 |
| Metolachlor (µg/L)*                                                                       |          |     | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20               | <0.20                     | <0.20                |       |         |                                                 |
| Metribuzin (µg/L)*                                                                        |          |     | <0.20          | < 0.20         | < 0.20         | <0.20          | <0.20          | < 0.20         | < 0.20         | <0.20          | <0.20          | < 0.20         | < 0.20         | <0.20          | < 0.20              | <0.20                     | <0.20                |       |         |                                                 |
| Naphthalene (µg/L)*                                                                       |          |     | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20              | < 0.20                    | < 0.20               |       |         |                                                 |
| 2,2',3,3',4,5',6,6'-Octchlorobiphenyl (µg/L)*                                             |          |     | < 0.50         | < 0.50         | < 0.50         | < 0.51         | < 0.50         | < 0.50         | < 0.50         | < 0.51         | < 0.50         | < 0.51         | < 0.50         | < 0.50         | < 0.50              | < 0.50                    | < 0.50               |       |         |                                                 |
| 2,2',3',4,6-Pentachlorobiphenyl (µg/L)*                                                   |          |     | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20         | < 0.20              | < 0.20                    | < 0.20               |       |         |                                                 |
| Phenanthrene (µg/L)*                                                                      |          |     | <0.20          | < 0.20         | < 0.20         | <0.20          | <0.20          | < 0.20         | < 0.20         | <0.20          | < 0.20         | < 0.20         | < 0.20         | <0.20          | <0.20               | <0.20                     | <0.20                |       |         |                                                 |
| Propachlor (µg/L)*                                                                        |          |     | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20               | <0.20                     | <0.20                |       |         |                                                 |
| Pyrene (µg/L)*                                                                            |          |     | <0.20<br><0.20 | <0.20<br><0.20 | <0.20          | <0.20          | <0.20<br><0.20      | <0.20<br><0.20            | <0.20<br><0.20       |       |         |                                                 |
| 2,2',4,4'-Tetrachlorobiphenyl (µg/L)*<br>2,4,5-Trichlorobiphenyl (µg/L)*                  |          |     | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20               | <0.20                     | <0.20                |       |         |                                                 |
| Trifluralin (µg/L)*                                                                       |          |     | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20          | <0.20               | <0.20                     | <0.20                |       |         |                                                 |
| sulfur (Ug/L)**                                                                           |          |     | ~0.20          | ~0.20          | ~0.20          | N0.20          | N0.20          | <0.20          | 122            | ~0.20          | ~0.20          | ~0.20          | <0.20          | ×0.20          | ×0.20               | ×0.20                     | ×0.20                | 1     |         |                                                 |
| * Monitored Compounds [40 CFR 141 40(e)]                                                  |          | -   |                |                |                |                |                |                |                |                |                |                |                |                |                     |                           |                      |       |         |                                                 |

\* Monitored Compounds [40 CFR 141.40(e)] \*\* Tentatively Identified Compounds \*\*\* Sampled three times during the year.

Volatile Organic Compounds

| Contaminate                                          | MCLG | MCL      | Rosanky (1)        | S (2)      | ER (3)      | Highway 21<br>(4) | (5)          | M (6)       | L (7)       | C (8)      | .,           | McDade (13) | . ,  | McMahan (16) | Polonia<br>Main(17) | Dale Polonia<br>North(18) | Polonia<br>South(19) | Range                | Average 1  | Highest    | Likely Source                                                                  |
|------------------------------------------------------|------|----------|--------------------|------------|-------------|-------------------|--------------|-------------|-------------|------------|--------------|-------------|------|--------------|---------------------|---------------------------|----------------------|----------------------|------------|------------|--------------------------------------------------------------------------------|
| Year Sampled                                         |      |          | 2022               | 2022       | 2021        | 2022              | 2022         | 2022        | 2022        | 2021       | 2022         | 2020        | 2021 | 2022         | 2022                | 2022                      | 2022                 |                      |            |            |                                                                                |
| Benzene (ppb)                                        | 0    | 5        | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from factories;<br>Leaching from gas storage tanks<br>and landfills. |
| Carbon tetrachloride (ppb)                           | 0    | 5        | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from chemical plants<br>and other industrial activities.             |
| Monochlorobenzene (ppb)                              | 100  | 100      | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from chemical and agricultural chemical factories.                   |
| o-Dichlorobenzene (ppb)                              | 600  | 600      | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from industrial<br>chemical factories.                               |
| para-Dichlorobenzene (ppb)                           | 75   | 75       | <0.5               | < 0.5      | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from industrial<br>chemical factories.                               |
| 1,2-Dichloroethane (ppb)                             | 0    | 5        | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from industrial chemical factories.                                  |
| 1,1-Dichloroethylene (ppb)                           | 7    | 7        | <0.5               | <0.5       | < 0.5       | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from industrial<br>chemical factories.                               |
| cis-1,2-Dichloroethylene (ppb)                       | 70   | 70       | <0.5               | <0.5       | < 0.5       | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from industrial<br>chemical factories.                               |
| trans-1,2-Dichloroethylene (ppb)                     | 100  | 100      | <0.5               | <0.5       | < 0.5       | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from industrial<br>chemical factories.                               |
| 1,2-Dichloropropane (ppb)                            | 0    | 5        | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from industrial<br>chemical factories.                               |
| Dichloromethane (ppb)                                | 0    | 5        | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from pharmaceutical<br>and chemical factories.                       |
| Ethylbenzene (ppb)                                   | 700  | 700      | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from petroleum refineries.                                           |
| Styrene (ppb)                                        | 100  | 100      | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from rubber and<br>plastic factories; Leaching from<br>landfills.    |
| Tetrachloroethylene (ppb)                            | 0    | 5        | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Leaching from PVC pipes;<br>Discharge from factories and dry<br>cleaners.      |
| Toluene (ppb)                                        | 1    | 1        | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from petroleum<br>factories.                                         |
| 1,2,4-Trichlorobenzene (ppb)                         | 70   | 70       | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | < 0.05      | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from textile-finishing factories.                                    |
| 1,1,1-Trichloroethane (ppb)                          | 200  | 200      | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.05       | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from metal degreasing<br>sites and other factories.                  |
| 1,1,2-Trichloroethane (ppb)                          | 3    | 5        | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | < 0.05      | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from industrial<br>chemical factories.                               |
| Trichloroethylene (ppb)                              | 0    | 5        | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.05       | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Discharge from metal degreasing<br>sites and other factories.                  |
| Vinyl chloride (ppb)                                 | 0    | 2        | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.05       | <0.5 | <0.5         | <0.5                | <0.5                      | <0.5                 |                      |            |            | Leaching from PVC pipes;<br>Discharge from plastic factories.                  |
| Total Xylenes (ppb)                                  | 10   | 10       | <0.5               | <0.5       | <0.5        | <0.5              | <0.5         | <0.5        | <0.5        | <0.5       | <0.5         | <0.5        | <0.5 | <0.5         | 0.5                 | <0.5                      | 0.6                  | <0.5-0.6             | 0.5        | 0.6        | Dioscharge from petroleum<br>factories; Discharge from<br>chemical factories.  |
| Chlorofrom (µg/L)*                                   |      |          | 3.8                | 1.0        | <1.0        | <1.0              | <1.0         | 1.8         | 2.4         | <1.0       | <1.0         | 1.7         | <1.0 | <1.0         | <1.0                | <1.0                      | <1.0                 | <1.0-3.8             | 2.1        | 3.8        |                                                                                |
| Bromodichloromethane (µg/L)*                         |      | <u> </u> | 4.0                | 2.4        | <1.0        | <1.0<br><1.0      | 2.5<br>4.2   | 1.9         | 2.6<br>2.6  | 1.0        | 1.7          | 3.5         | <1.0 | 1.2<br>2.5   | <u>1.4</u><br>4.1   | <1.0                      | <1.0                 | <1.0-4.0             | 2.2<br>3.2 | 4.0        |                                                                                |
| Dibromochloromethane (µg/L)*<br>Bromoform (µg/L)*    |      |          | <b>3.6</b><br><1.0 | 5.9<br>5.7 | <1.0<br>1.3 | <1.0              | 4.2          | 1.7<br><1.0 | 2.6<br><1.0 | 1.8<br>1.7 | 2.6<br>1.8   | 4.6         | <1.0 | 2.5          | 4.1 7.9             | 2.1<br>3.4                | 2.3<br>5.3           | <1.0-5.9<br><1.0-7.9 |            | 5.9<br>7.9 |                                                                                |
| Dibromomethane (µg/L)*                               |      |          | <1.0               | <1.0       | <1.0        | <1.0              | <1.0         | <1.0        | <1.0        | <1.0       | <1.0         | <1.0        | <1.0 | <1.0         | <1.0                | <1.0                      | <1.0                 | <1.0-7.9             | 5.5        | 1.3        |                                                                                |
| 1,3-Dichlorobenzene (µg/L)*                          |      |          | <1.0               | <1.0       | <1.0        | <1.0              | <1.0         | <1.0        | <1.0        | <1.0       | <1.0         | <1.0        | <1.0 | <1.0         | <1.0                | <1.0                      | <1.0                 |                      |            |            |                                                                                |
| 1,1-Dichloropropene (µg/L)*                          |      |          | <1.0               | <1.0       | <1.0        | <1.0              | <1.0         | <1.0        | <1.0        | <1.0       | <1.0         | <1.0        | <1.0 | <1.0         | <1.0                | <1.0                      | <1.0                 |                      |            |            |                                                                                |
| 1,1-Dichloroethane (µg/L)*                           |      |          | <1.0               | <1.0       | <1.0        | <1.0              | <1.0         | <1.0        | <1.0        | <1.0       | <1.0         | <1.0        | <1.0 | <1.0         | <1.0                | <1.0                      | <1.0                 |                      | $\vdash$   |            |                                                                                |
| 1,1,2,2-Tetrachloroethane (µg/L)*                    | _    |          | <1.0               | <1.0       | <1.0        | <1.0              | <1.0         | <1.0        | <1.0        | <1.0       | <1.0         | <1.0        | <1.0 | <1.0         | <1.0                | <1.0                      | <1.0                 |                      | $\vdash$   |            |                                                                                |
| 1,3-Dichloropropane (µg/L)*<br>Chloromethane (µg/L)* | _    | -        | <1.0               | <1.0       | <1.0        | <1.0              | <1.0<br><2.0 | <1.0        | <1.0        | <1.0       | <1.0<br><2.0 | <1.0        | <1.0 | <1.0<br><2.0 | <1.0<br><2.0        | <1.0<br><2.0              | <1.0                 |                      | +          |            |                                                                                |
| Bromomethane (µg/L)*                                 |      |          | <2.0               | <2.0       | <2.0        | <2.0              | <2.0         | <2.0        | <2.0        | <2.0       | <2.0         | <2.0        | <2.0 | <2.0         | <2.0                | <2.0                      | <2.0                 |                      |            |            |                                                                                |
| 1,2,3-Trichloropropane (µg/L)*                       |      |          | <1.0               | <1.0       | <1.0        | <1.0              | <1.0         | <1.0        | <1.0        | <1.0       | <1.0         | <1.0        | <1.0 | <1.0         | <1.0                | <1.0                      | <1.0                 |                      |            |            |                                                                                |

| Contaminate                         | MCLG | MCL | Rosanky (1) | S (2) | ER (3) | Highway 21<br>(4) | Camp Swift<br>(5) | M (6) | L (7) | C (8) | Blue (9) | McDade (13) | Delhi (15) | McMahan (16) | Polonia<br>Main(17) | Dale Polonia<br>North(18) | Polonia<br>South(19) | Range | Average I | lighest | Likely Source |
|-------------------------------------|------|-----|-------------|-------|--------|-------------------|-------------------|-------|-------|-------|----------|-------------|------------|--------------|---------------------|---------------------------|----------------------|-------|-----------|---------|---------------|
| Year Sampled                        |      |     | 2022        | 2022  | 2021   | 2022              | 2022              | 2022  | 2022  | 2021  | 2022     | 2020        | 2021       | 2022         | 2022                | 2022                      | 2022                 |       |           |         |               |
| ,1,1,2-Tetrachloroethane (µg/L)*    |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| Chloroethane (µg/L)*                |      |     | <2.0        | <2.0  | <2.0   | <2.0              | <2.0              | <2.0  | <2.0  | <2.0  | <2.0     | <2.0        | <2.0       | <2.0         | <2.0                | <2.0                      | <2.0                 |       |           |         |               |
| 2,2-Dichloropropane (µg/L)*         |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| 2-Chlorotoluene (µg/L)*             |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| -Chlorotoluene (µg/L)*              |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| Bromobenzene (µg/L)*                |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| is-1,3-Dichloropropene (µg/L)*      |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| rans-1,3-Dichloropropene (µg/L)*    |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| ,2,4-Trimethylbenzene (µg/L)**      |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| ,2,3-Trichlorobenzene (µg/L)**      |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| -Propylbenzene (µg/L)**             |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| -Butylbenzene (µg/L)**              |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| Naphthalene (µg/L)**                |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| Hexachlorobutadiene (µg/L)**        |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| ,3,5-Trimethylbenzene (µg/L)**      |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| -Isopropyltoluene (µg/L)**          |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| sopropylbenzene (µg/L)**            |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| -Butylbenzene (µg/L)**              |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| -Butylbenzene (µg/L)**              |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| Frichlorofluoromethane (µg/L)**     |      |     | <2.0        | <2.0  | <2.0   | <2.0              | <2.0              | <2.0  | <2.0  | <2.0  | <2.0     | <2.0        | <2.0       | <2.0         | <2.0                | <2.0                      | <2.0                 |       |           |         |               |
| Dichlorodifluoromethane (µg/L)**    |      |     | <2.0        | <2.0  | <2.0   | <2.0              | <2.0              | <2.0  | <2.0  | <2.0  | <2.0     | <2.0        | <2.0       | <2.0         | <2.0                | <2.0                      | <2.0                 |       |           |         |               |
| Bromochloromethane (µg/L)**         |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| Acetone (µg/L)***                   |      |     | <10         | <10   | <10    | <10               | <10               | <10   | <10   | <10   | <10      | <10         | <10        | <10          | <10                 | <10                       | <10                  |       |           |         |               |
| Acrylonitrile (µg/L)***             |      |     | <10         | <10   | <10    | <10               | <10               | <10   | <10   | <10   | <10      | <10         | <10        | <10          | <10                 | <10                       | <10                  |       |           |         |               |
| 2-Butanone MEK (µg/L)***            |      |     | <10         | <10   | <10    | <10               | <10               | <10   | <10   | <10   | <10      | <10         | <10        | <10          | <10                 | <10                       | <10                  |       |           |         |               |
| Carbon disulfide (µg/L)***          |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| Ethyl methacrylate (µg/L)***        |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| P-Hexanone (µg/L)**                 |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| odomethane (µg/L)***                |      |     | <5.0        | <5.0  | <5.0   | <5.0              | <5.0              | <5.0  | <5.0  | <5.0  | <5.0     | <2.0        | <5.0       | <5.0         | <5.0                | <5.0                      | <5.0                 |       |           |         |               |
| Methyl Methacrylate (µg/L)***       |      |     | <1.0        | <1.0  | <1.0   | <1.0              | <1.0              | <1.0  | <1.0  | <1.0  | <1.0     | <1.0        | <1.0       | <1.0         | <1.0                | <1.0                      | <1.0                 |       |           |         |               |
| -wieinyi-z-pentanone wirisk         |      |     | <2.0        | <2.0  | <2.0   | <2.0              | <2.0              | <2.0  | <2.0  | <2.0  | <2.0     | <2.0        | <2.0       | <2.0         | <2.0                | <2.0                      | <2.0                 |       |           |         |               |
| Aethyl-t-butyl ether MTBE (µg/L)*** |      |     | < 0.5       | < 0.5 | < 0.5  | < 0.5             | <0.5              | < 0.5 | < 0.5 | <2.0  | < 0.5    | < 0.5       | <2.0       | <2.0         | < 0.5               | < 0.5                     | < 0.5                |       |           |         |               |
| Cetrahydrofuran (µg/L)***           |      |     | <5.0        | <5.0  | <5.0   | <5.0              | <5.0              | <5.0  | <5.0  | <5.0  | <5.0     | <5.0        | <5.0       | <5.0         | <5.0                | <5.0                      | <5.0                 |       |           |         |               |
| Vinvl acetate (Ug/L)***             |      |     |             |       |        |                   |                   |       |       |       |          |             |            |              |                     |                           |                      | 1     |           |         | ~             |

\* Monitored Compounds [40 CFR 141.40(e)] \*\* Monitored Compounds [40 CFR 141.40(j)]

\*\*\* Other Compounds

Organics (EDB & DBCP)

| Contaminate                    | MCL<br>G | MCL | Rosanky (1) | S (2)  | ER (3) | Highway 21 (4) | Camp Swift (5) | M (6)     | L (7)  | C (8)  | Blue (9) | McDade (13) | Delhi (15) | McMahan<br>(16) | Polonia<br>Main(17) | Dale Polonia<br>North(18) | Polonia<br>South(19) | Range | Highest | Likely Source                                                       |
|--------------------------------|----------|-----|-------------|--------|--------|----------------|----------------|-----------|--------|--------|----------|-------------|------------|-----------------|---------------------|---------------------------|----------------------|-------|---------|---------------------------------------------------------------------|
| Year Sampled                   |          |     | 2020        | 2020   | 2020   | 2020           | 2020           | 2020      | 2020   | 2020   | 2020     | 2020        | 2020       | 2020            | 2021                | 2020                      | 2021                 |       |         |                                                                     |
| Ethylene dibromide (ppt)       | 0        | 50  | <10.0       | <10.0  | <10.0  | <10.0          | <10.0          | <10.0     | <10.0  | <10.0  | <10.0    | <10.0       | <10.0      | <10.0           | <10.0               | <10.0                     | <10.0                |       |         | Discharge from petroleum<br>refineries<br>Runoff/leaching from soil |
| Dibromochloropropane (ppt)     | 0        | 200 | <20.0       | <20.0  | <20.0  | <20.0          | <20.0          | <20.0     |        |        | <20.0    | <20.0       | <20.0      | <20.0           | <20.0               | <20.0                     | <20.0                |       |         | fumigant used on soybeans, cotton, pineapples, and orchards.        |
| 1,2,3-Trichloropropane (µg/L)* |          |     | < 0.05      | < 0.05 | < 0.05 | < 0.05         | < 0.05         | $<\!0.05$ | < 0.05 | < 0.05 | < 0.05   | < 0.05      | < 0.05     | < 0.05          | < 0.05              | < 0.05                    | < 0.05               |       |         |                                                                     |
| * Non Regulated Compound       |          |     |             |        |        |                |                |           |        |        |          |             |            |                 |                     |                           |                      |       |         |                                                                     |

Organics (Carbamates by HPLC)

| Contaminate                 | MCLG | MCL | Rosanky (1) | S (2) | ER (3) | Highway 21 (4) | Camp Swift (5) | M (6) | L (7) | C (8) | Blue (9) | McDade<br>(13) | Delhi (15) | McMahan<br>(16) | Polonia<br>Main(17) | Dale Polonia<br>North(18) | Polonia<br>South(19) | Range | Highest | Likely Source               |
|-----------------------------|------|-----|-------------|-------|--------|----------------|----------------|-------|-------|-------|----------|----------------|------------|-----------------|---------------------|---------------------------|----------------------|-------|---------|-----------------------------|
| Year Sampled                |      |     | 2020        | 2020  | 2020   | 2020           | 2020           | 2020  | 2020  | 2020  | 2020     | 2020           | 2020       | 2020            | 2021                | 2020                      | 2021                 |       |         |                             |
| Aldicarb (µg/L)             |      | 3   | < 0.5       | < 0.5 | < 0.5  | < 0.5          | <0.5           | < 0.5 | < 0.5 | < 0.5 | < 0.5    | < 0.5          | < 0.5      | < 0.5           | < 0.5               | < 0.5                     | < 0.5                |       |         |                             |
| Aldicarb sulfone (µg/L)     |      | 2   | < 0.8       | < 0.8 | < 0.8  | < 0.8          | < 0.8          | < 0.8 | < 0.8 | < 0.8 | < 0.8    | < 0.8          | < 0.8      | < 0.8           | < 0.8               | < 0.8                     | < 0.8                |       |         |                             |
| Aldicarb Sulfoxide (µg/L)   |      | 4   | < 0.5       | < 0.5 | < 0.5  | <0.5           | <0.5           | < 0.5 | < 0.5 | < 0.5 | < 0.5    | < 0.5          | < 0.5      | < 0.5           | < 0.5               | < 0.5                     | < 0.5                |       |         |                             |
| Carbofuran (ppb)            | 40   | 40  | <0.9        | <0.9  | <0.9   | <0.9           | <0.9           | <0.0  | <0.0  | <0.9  | <0.9     | <0.9           | <0.9       | <0.9            | <0.9                | <0.9                      | <0.9                 |       |         | Leaching from soil fumigant |
| Carboruran (ppb)            | 40   | 40  | <0.9        | <0.9  | <0.9   | <0.9           | <0.9           | <0.9  | <0.9  | <0.9  | <0.9     | <0.9           | <0.9       | <0.9            | <0.9                | <0.9                      | <0.9                 |       |         | used on rice and alfalfa.   |
|                             |      |     |             |       |        |                |                |       |       |       |          |                |            |                 |                     |                           |                      |       |         | Runoff/leaching from        |
| Oxamyl (ppb)                | 200  | 200 | <2.0        | <2.0  | <2.0   | <2.0           | <2.0           | <2.0  | <2.0  | <2.0  | <2.0     | <2.0           | <2.0       | <2.0            | <2.0                | <2.0                      | <2.0                 |       |         | insecticide used on apples, |
|                             |      |     |             |       |        |                |                |       |       |       |          |                |            |                 |                     |                           |                      |       |         | potatoes, and tomatoes.     |
| Baygon (µg/L)*              |      |     | <2.0        | <2.0  | <2.0   | <2.0           | <2.0           | <2.0  | <2.0  | <2.0  | <2.0     | <2.0           | <2.0       | <2.0            | <2.0                | <2.0                      | <2.0                 |       |         |                             |
| Carbaryl (µg/L)*            |      |     | <2.0        | <2.0  | <2.0   | <2.0           | <2.0           | <2.0  | <2.0  | <2.0  | <2.0     | <2.0           | <2.0       | <2.0            | <2.0                | <2.0                      | <2.0                 |       |         |                             |
| 3-Hydroxycarbofuran (µg/L)* |      |     | <2.0        | <2.0  | <2.0   | <2.0           | <2.0           | <2.0  | <2.0  | <2.0  | <2.0     | <2.0           | <2.0       | <2.0            | <2.0                | <2.0                      | <2.0                 |       |         |                             |
| Methiocarb (µg/L)*          |      |     | <4.0        | <4.0  | <4.0   | <4.0           | <4.0           | <4.0  | <4.0  | <4.0  | <4.0     | <4.0           | <4.0       | <4.0            | <4.0                | <4.0                      | <4.0                 |       |         |                             |
| Methomyl (µg/L)*            |      |     | <2.0        | <2.0  | <2.0   | <2.0           | <2.0           | <2.0  | <2.0  | <2.0  | <2.0     | <2.0           | <2.0       | <2.0            | <2.0                | <2.0                      | <2.0                 |       |         |                             |
| * Manitana I Campanya da    |      |     |             |       |        |                |                |       |       |       |          |                |            |                 |                     |                           |                      |       |         |                             |

\* Monitored Compounds

DBP - 2

| Contaminate                       | MCLG | MCL  | Date       | 154 FM 2239<br>(DBP2-1) | 5554 FM 535 Cedar<br>Creek VFD (DBP2-2) | Bateman Road & Red<br>Rock Ranch Rd. (DBP2-3) | 973 & New Sweden Rd.<br>Bohls Tank (DBP2-4) | Rolands (Polonia Main) | 3030 Lytton Rd (Polonia<br>North) | 5992 CR 139 (Polonia<br>South) | Range       | Highest | Likely Source                    |
|-----------------------------------|------|------|------------|-------------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------|-----------------------------------|--------------------------------|-------------|---------|----------------------------------|
| Year Sampled                      |      |      |            | 2022                    | 2022                                    | 2022                                          | 2022                                        | 2022                   | 2022                              | 2022                           |             |         |                                  |
|                                   |      |      | 1/24/2022  | 3.6                     | 5.3                                     | 7.4                                           | 8.8                                         |                        |                                   |                                |             |         |                                  |
|                                   |      |      | 4/4/2022   | 8.9                     | 6.6                                     | 9.8                                           | 8.2                                         |                        |                                   |                                |             |         |                                  |
| Total HAA5 (ppb)                  |      |      | 5/3/2022   |                         |                                         |                                               |                                             | 4.3                    |                                   | 4.7                            | ļ           |         | Decementaria of                  |
| Total HAAS (ppb)                  |      |      | 9/19/2022  | 10.9                    | 7.6                                     | 7.9                                           | 10.1                                        |                        |                                   |                                | 2.5 - 13.3  | 13.3    | By-products of<br>drinking water |
|                                   |      |      | 9/28/2022  |                         |                                         |                                               |                                             |                        | 2.5                               |                                | 2.5 - 13.5  | 15.5    | disinfection.                    |
|                                   |      |      | 10/11/2022 | 13.3                    | 4.9                                     | 8.9                                           | 11.7                                        |                        |                                   |                                |             |         | distinection.                    |
| Locational Running Annual Average | N/A  | 60.0 |            | 9.2                     | 6.1                                     | 8.5                                           | 9.7                                         |                        |                                   |                                |             | 1       |                                  |
| Operational evaluation Level      |      |      |            | 11.6                    | 6.0                                     | 8.9                                           | 10.4                                        |                        |                                   |                                |             |         |                                  |
|                                   |      |      | 1/24/2022  | 17.1                    | 47.9                                    | 46.4                                          | 53.5                                        |                        |                                   |                                |             |         |                                  |
|                                   |      |      | 4/4/2022   | 25.3                    | 43.1                                    | 52.4                                          | 44.8                                        |                        |                                   |                                |             |         |                                  |
| Total THM (ppb)                   |      |      | 5/3/2022   |                         |                                         |                                               |                                             | 22.3                   |                                   | 32.1                           |             |         | Decementary of                   |
| Total THM (ppb)                   |      |      | 9/19/2022  | 39.5                    | 60.6                                    | 66.2                                          | 71.8                                        |                        |                                   |                                | 12.5 - 71.8 | 71.8    | By-products of<br>drinking water |
|                                   |      |      | 9/28/2023  |                         |                                         |                                               |                                             |                        | 12.5                              |                                | 12.5 - /1.6 | /1.0    | disinfection.                    |
|                                   |      |      | 10/11/2022 | 33.9                    | 50.0                                    | 71.8                                          | 56.1                                        |                        |                                   |                                |             |         | distinection.                    |
| Locational Running Annual Average | N/A  | 80.0 |            | 29.0                    | 50.4                                    | 59.2                                          | 56.6                                        |                        |                                   |                                |             |         |                                  |
| Operational evaluation Level      |      |      |            | 33.2                    | 50.9                                    | 65.6                                          | 57.2                                        |                        |                                   |                                |             |         |                                  |

Not Bold = less than the DL

# Aqua - Lead/Copper

| Year Sampled | MCLG | MCL<br>(Action Level) | 90th Percentile Value 2020 | # Site Above Action Limit 2020 | Likely Source                                                            |  |
|--------------|------|-----------------------|----------------------------|--------------------------------|--------------------------------------------------------------------------|--|
| Copper (ppm) | 1.3  | 1.3                   | 0.186                      | 0                              | Corrosion of household plumbing systems;<br>Erosion of natural deposits. |  |
| Lead (ppb)   | 0    | 15                    | 5                          |                                | Corrosion of household plumbing systems;<br>Erosion of natural deposits. |  |

# Polonia - Lead/Copper

| Year Sampled | MCLG | MCL<br>(Action Level) | 90th Percentile Value<br>2021-2022 | # Site Above Action Limit<br>2021-2022 | Likely Source                                                            |
|--------------|------|-----------------------|------------------------------------|----------------------------------------|--------------------------------------------------------------------------|
| Copper (ppm) | 1.3  | 1.3                   | <0.0010                            | 0                                      | Corrosion of household plumbing systems;<br>Erosion of natural deposits. |
| Lead (ppb)   | 0    | 15                    | 5                                  |                                        | Corrosion of household plumbing systems;<br>Erosion of natural deposits. |

Asbestos

| Contaminate    | MCLG | MCL | 1034 CR 337 | 5992 CR 139 | 3360<br>Homanville Dr | 3223 San Holler<br>Rd | Range | Highest | Likely Source                                                      |
|----------------|------|-----|-------------|-------------|-----------------------|-----------------------|-------|---------|--------------------------------------------------------------------|
| Year Sampled   |      |     | 2022        | 2022        | 2022                  | 2022                  |       |         |                                                                    |
| Asbestos (MFL) | 7    | 7   | < 0.197     | < 0.197     | < 0.197               | < 0.197               |       |         | Decay of asbestos cement water mains; Erosion of natural deposits. |

MFL = Million fibers per liter.

# Microbial

| Contaminate                        | MCLG | MCL                                                                                                                                                                                                                                | 2022                                  |   | Likely Source                         |  |
|------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---|---------------------------------------|--|
| Total Coliform Bacteria            | 0    | Presence of More Than 5% of Monthly Samples                                                                                                                                                                                        | Highest Monthly %<br>Positive Samples | 0 | Naturally present in the environment. |  |
| Fecal Coliforms and <i>E. coli</i> | 0    | A routine sample and a repeat sample<br>are TC positive, and one is also fecal<br>coliform or <i>E. coli</i> positive. An<br>uncorrected <i>E. coli</i> -positive sample at<br>the raw grioundwater source is a TT for<br>the GWR. | Total # Positive Samples.             | 0 | Human and animal fecal waste.         |  |

TC = Total Coliform. TT = Treatment Technique GWR = Groundwater Rule.

**Residual Disinfectant** 

| Contaminate    | MRDLG MCL |     | Average | Range | Likely Source                            |
|----------------|-----------|-----|---------|-------|------------------------------------------|
| Year Sampled   | 2         | 022 |         |       |                                          |
| Chlorine (ppm) | 4         | 4   | 1.5     | 0.5-4 | Water additive used to control microbes. |

MRDLG = Maximum residual disinfectant level goal. MRDL = Maximum residual disinfectant level.